Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+ -dependent phosphate cotransporters.

We analyzed vitamin D receptor (VDR) (-/-) mice fed either a normal diet or a rescue diet. Weanling VDR (-/-) mice had hypophosphatemia and hyperphosphaturia. Renal Na(+)-dependent inorganic phosphate (Pi) cotransport activity was significantly decreased in weanling VDR (-/-) mice. In VDR (+/+) mice, renal Npt2a/Npt2c/PiT-2 protein levels were significantly increased at 21 and 28 days of age compared with that at 1 day of age. Npt2c and PiT-2 protein levels were maximally expressed at 28 days of age. Npt2a protein levels were significantly decreased in mice at 28 days of age compared with 21 and 60 days of age. In VDR (-/-) mice, Npt2a/Npt2c/PiT-2 protein levels were considerably lower than those in age-matched VDR (+/+) mice at 21 and 28 days of age. The reduced Npt2a/Npt2c/PiT-2 protein recovered completely in VDR-null mice fed the rescue diet. Although Pi transport activity and Npt2b were reduced in the proximal intestine in VDR (-/-) mice, Npt2b protein levels were not reduced in the distal intestine in VDR (-/-) mice. The rescue diet did not affect intestinal Npt2b protein levels in VDR (-/-) mice. Thus, reduced intestinal Pi absorption in VDR (-/-) mice does not seem to be the only factor that causes hypophosphatemia; reduced Npt2a, Npt2c, or PiT-2 protein levels during development might also cause hypophosphatemia and rickets in VDR (-/-) mice. Furthermore, dietary intervention completely normalized the expression of the renal phosphate transporters (Npt2a/Npt2c/PiT-2) in VDR (-/-) mice, suggesting that the lack of VDR activity is not the cause of impaired renal phosphate reabsorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app