JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes.

Biomaterials 2010 December
In vivo niche plays an important role in determining the fate of exogenously implanted stem cells. Due to the lack of a proper chondrogenic niche, stable ectopic chondrogenesis of mesenchymal stem cells (MSCs) in subcutaneous environments remains a great challenge. The clinical application of MSC-regenerated cartilage in repairing defects in subcutaneous cartilage such as nasal or auricular cartilage is thus severely limited. The creation of a chondrogenic niche in subcutaneous environments is the key to solving this problem. The current study demonstrates that bone marrow stromal cells (BMSCs) could form cartilage-like tissue in a subcutaneous environment when co-transplanted with articular chondrocytes, indicating that chondrocytes could create a chondrogenic niche to direct chondrogenesis of BMSCs. Then, a series of in vitro co-culture models revealed that it was the secretion of soluble factors by chondrocytes but not cell-cell contact that provided the chondrogenic signals. The subsequent studies further demonstrated that multiple factors currently used for chondroinduction (including TGF-β1, IGF-1 and BMP-2) were present in the supernatant of chondrocyte-engineered constructs. Furthermore, all of these factors were required for initiating chondrogenic differentiation and fulfilled their roles in a coordinated way. These results suggest that paracrine signaling of soluble chondrogenic factors provided by chondrocytes was an important mechanism in directing the in vivo ectopic chondrogenesis of BMSCs. The multiple co-culture systems established in this study provide new methods for directing committed differentiation of stem cells as well as new in vitro models for studying differentiation mechanism of stem cells determined by a tissue-specific niche.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app