JOURNAL ARTICLE

Theoretical investigation of the mechanism and dynamics of intramolecular coherent resonance energy transfer in soft molecules: a case study of dithia-anthracenophane

Lei Yang, Stefano Caprasecca, Benedetta Mennucci, Seogjoo Jang
Journal of the American Chemical Society 2010 December 1, 132 (47): 16911-21
21050006
A computational study is conducted on dithia-anthracenophane (DTA), for which there is experimental evidence for coherent resonance energy transfer dynamics, and on dimethylanthracene (DMA), a molecule representing the energy donor and the acceptor in DTA. Electronic excitation energies are calculated by configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) methods and are compared to experimental ones. Electronic coupling constants are calculated between two DMAs embedded into the ground-state structure of DTA employing methods based on transition densities. The resulting values of electronic coupling provide a more consistent interpretation of experiments than those based on one-half the level spacing of DTA excitation energies. Solvation effects are studied based on the polarizable continuum model (PCM). Solvent-induced polarization and screening effects are shown to make opposite contributions, and the net electronic coupling is little different from the value in a vacuum. The likelihood of coherent population transfer is assessed on the basis of a recently developed theory of coherent resonance energy transfer. The time scale of bath is shown to have an important role in sustaining the quantum coherence. The combination of quantum chemical and dynamical data suggests that the electronic coupling in DTA is in the range of 50-100  cm(-1). The presence of oscillatory excitation population dynamics can be understood from the picture of polaronic excitation moderately dressed with dispersive vibrational modes. The effect of torsional modulation on the excitation energies of DTA and electronic coupling is examined on the basis of optimized structures with the torsional angle constrained. The result suggests that inelastic effect due to torsional motion cannot be disregarded in DTA.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
21050006
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"