JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

In silico prediction of human pathogenicity in the γ-proteobacteria.

BACKGROUND: Although the majority of bacteria are innocuous or even beneficial for their host, others are highly infectious pathogens that can cause widespread and deadly diseases. When investigating the relationships between bacteria and other living organisms, it is therefore essential to be able to separate pathogenic organisms from non-pathogenic ones. Using traditional experimental methods for this purpose can be very costly and time-consuming, and also uncertain since animal models are not always good predictors for pathogenicity in humans. Bioinformatics-based methods are therefore strongly needed to mine the fast growing number of genome sequences and assess in a rapid and reliable way the pathogenicity of novel bacteria.

METHODOLOGY/PRINCIPAL FINDINGS: We describe a new in silico method for the prediction of bacterial pathogenicity, based on the identification in microbial genomes of features that appear to correlate with virulence. The method does not rely on identifying genes known to be involved in pathogenicity (for instance virulence factors), but rather it inherently builds families of proteins that, irrespective of their function, are consistently present in only one of the two kinds of organisms, pathogens or non-pathogens. Whether a new bacterium carries proteins contained in these families determines its prediction as pathogenic or non-pathogenic. The application of the method on a set of known genomes correctly classified the virulence potential of 86% of the organisms tested. An additional validation on an independent test-set assigned correctly 22 out of 24 bacteria.

CONCLUSIONS: The proposed approach was demonstrated to go beyond the species bias imposed by evolutionary relatedness, and performs better than predictors based solely on taxonomy or sequence similarity. A set of protein families that differentiate pathogenic and non-pathogenic strains were identified, including families of yet uncharacterized proteins that are suggested to be involved in bacterial pathogenicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app