Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dynamics of ammonia-oxidizing communities in barley-planted bulk soil and rhizosphere following nitrate and ammonium fertilizer amendment.

Oxidation of ammonia by nitrifying microorganisms is a major pathway that fertilizer nitrogen (N) may take upon application to agricultural soils, but the relative roles of bacterial (AOB) vs. archaeal (AOA) ammonia oxidizers are controversial. We explored the effects of various forms of mineral N fertilizer on the AOB and AOA community dynamics in two different soils planted with barley. Ammonia oxidizers were monitored via real-time PCR and terminal restriction fragment length polymorphism analysis of bacterial and archaeal amoA genes following the addition of either [NH₄]₂SO₄, NH₄NO₃ or KNO₃. AOB and AOA communities were also studied specifically in the rhizospheres of two different barley varieties upon [NH₄]₂SO₄ vs. KNO₃ addition. AOB changed in community composition and increased in abundance upon ammonium amendment in bulk soil and rhizosphere, with changes in bacterial amoA copy numbers lagging behind relative to changes in soil ammonium. In both soils, only T-RFs corresponding to phylotypes related to Nitrosospira clade 3a underwent significant community changes. Increases in AOB abundance were generally stronger in the bulk soil than in the rhizosphere, implying significant ammonia uptake by plant roots. AOA underwent shifts in the community composition over time and fluctuated in abundance in all treatments irrespective of ammonia availability. AOB were thus considered as the main agents responsible for fertilizer ammonium oxidation, while the functions of AOA in soil N cycling remain unresolved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app