OPEN IN READ APP
JOURNAL ARTICLE

Local CQR Smoothing: An Efficient and Safe Alternative to Local Polynomial Regression

Bo Kai, Runze Li, Hui Zou
Journal of the Royal Statistical Society. Series B, Statistical Methodology 2010, 72 (1): 49-69
20975930
Local polynomial regression is a useful nonparametric regression tool to explore fine data structures and has been widely used in practice. In this paper, we propose a new nonparametric regression technique called local composite-quantile-regression (CQR) smoothing in order to further improve local polynomial regression. Sampling properties of the proposed estimation procedure are studied. We derive the asymptotic bias, variance and normality of the proposed estimate. Asymptotic relative efficiency of the proposed estimate with respect to the local polynomial regression is investigated. It is shown that the proposed estimate can be much more efficient than the local polynomial regression estimate for various non-normal errors, while being almost as efficient as the local polynomial regression estimate for normal errors. Simulation is conducted to examine the performance of the proposed estimates. The simulation results are consistent with our theoretical findings. A real data example is used to illustrate the proposed method.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
20975930
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"