JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of 5-hydroxytryptamine on substantia gelatinosa neurons of the trigeminal subnucleus caudalis in immature mice.

Brain Research 2011 January 13
Serotonin (5-hydroxytryptamine, 5-HT) is involved in the descending modulation of nociceptive transmission in the spinal dorsal horn. The trigeminal subnucleus caudalis (Vc; medullary dorsal horn) processes nociceptive input from the orofacial region, and 5-HT-containing axons are numerous in the superficial layers of the Vc. This study examined the actions of 5-HT on the substantia gelatinosa (SG) neurons of the Vc, using gramicidin-perforated patch-clamp recording in brainstem slice preparations from immature mice. In order to clarify the possible mechanisms underlying 5-HT actions in the SG of the Vc, the direct membrane effects of 5-HT and effects of 5-HT receptor subtype agonists were examined. 5-HT induced a hyperpolarization in the majority (64/115, 56%) of the SG neurons tested. Thirty nine (34%) SG neurons showed no response, and 12 (10%) neurons responded with depolarization. The hyperpolarizing response to 5-HT was concentration-dependent (0.1-30 μM; n=7), not desensitized by repeated application (n=22), and significantly attenuated by Ba(2+) (K(+) channel blocker; n=8). The 5-HT-induced hyperpolarization was maintained in the presence of TTX (Na(+) channel blocker), CNQX (non-NMDA glutamate receptor antagonist), AP5 (NMDA glutamate receptor antagonist), picrotoxin (GABA(A) receptor antagonist), and strychnine (glycine receptor antagonist), indicating direct postsynaptic action of 5-HT on SG neurons (n=7). The 5-HT-induced hyperpolarizing effects were mimicked by 8-OH-DPAT (5-HT(1A) receptor agonist) and α-methyl-5-HT (5-HT(2) receptor agonist) and blocked by WAY-100635 (5-HT(1A) receptor antagonist) and ketanserin (5-HT(2) receptor antagonist). Single-cell RT-PCR also revealed the presence of mRNA for 5-HT(1A) and 5-HT(2C) subtypes in the SG neurons. These results suggest that 5-HT acts directly on SG neurons and 5-HT-induced hyperpolarization is mediated, in part, by 5-HT(1A) receptors and 5-HT(2) receptors, as well as by the activation of K(+) channels, indicating an important role for 5-HT in the modulation of orofacial nociceptive processing at the level of the SG of the Vc in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app