Add like
Add dislike
Add to saved papers

Biostabilization and erodibility of cohesive sediment deposits in wildfire-affected streams.

Water Research 2011 January
The erosion characteristics and bed stability of wildfire-affected stream sediment were measured in an annular flume. Biofilms were grown in the flume on cohesive streambed sediments collected from a wildfire affected stream and a reference undisturbed stream in southern Alberta, Canada. Examined factors that influence sediment erosion, settling and bed stability included applied shear stress, geochemical and physical properties of the sediment, floc structural characteristics and consolidation period (2, 7, 14 days). Erosion characteristics and sediment properties were strongly influenced by wildfire, consolidation period and bed biostabilization. The fire-modified sediment was more resistant to erosion than the reference unburned sediment. Settling velocities were lower in the burned sediment due to higher organic content and porosity. The critical shear stresses for erosion were 1.6 and 1.8 times higher for the burn-associated sediment after 7 and 14 days of consolidation. The differences are related to the greater degree and spatial extent (depth) of biofilm attachment in the burned sediment. Erosion depths were 4-8 times higher in burned sediment as a result of wildfire-associated biostabilization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app