JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

Underlying brain mechanisms that regulate sleep-wakefulness cycles.

Daily cycles of wakefulness and sleep are regulated by coordinated interactions between wakefulness- and sleep-regulating neural circuitry. Wakefulness is associated with neuronal activity in cholinergic neurons in the brainstem and basal forebrain, monoaminergic neurons in the brainstem and posterior hypothalamus, and hypocretin (orexin) neurons in the lateral hypothalamus that act in a coordinated manner to stimulate cortical activation on the one hand and behavioral arousal on the other hand. Each of these neuronal groups subserves distinct aspects of wakefulness-related functions of the brain. Normal transitions from wakefulness to sleep involve sleep-related inhibition and/or disfacilitation of the multiple arousal systems. The cell groups that shut off the network of arousal systems, at sleep onset, occur with high density in the ventral lateral preoptic area (VLPO) and the median preoptic nucleus (MnPN) of the hypothalamus. Preoptic neurons are activated during sleep and exhibit sleep-wake state-dependent discharge patterns that are reciprocal of that observed in several arousal systems. Neurons in the VLPO contain the inhibitory neuromodulator, galanin, and the inhibitory neurotransmitter, gamma-aminobutyric acid (GABA). The majority of MnPN sleep-active neurons synthesize GABA. VLPO and MnPN neurons are sources of projections to arousal-regulatory systems in the posterior and lateral hypothalamus and the rostral brainstem. Mechanisms of sleep induction by these nuclei are hypothesized to involve GABA-mediated inhibition of multiple arousal systems. Normal cycling between discrete behavioral states is mediated by the combined influence of a sleep need that increases with continued wakefulness and an intrinsic circadian oscillation. This chapter will review anatomical and functional properties of populations of sleep-/wake-regulating neurons, focusing on recent findings supporting functional significance of the VLPO and MnPN in the regulation of sleep--wake homeostasis. Evidence indicating that MnPN and VLPO neurons have different, but complementary sleep regulatory functions will be summarized. Potential mechanisms that function to couple activity in these two sleep-regulatory neurons will be discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app