JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems.

Nanoscale zero-valent iron (NZVI) represents a promising approach for source zone control, but concerns over its reactive lifetime might limit application. Here, we demonstrate that dithionite (S₂O₄²⁻), a reducing agent for in situ redox manipulation, can restore the reducing capacity of passivated NZVI. Slurries of NZVI were aged in the presence (3 days) and absence (60 days) of dissolved oxygen over a range of pH values (6-8). Upon loss of reactivity toward model pollutants{1,1,1,2-tetrachloroethane, hexavalent chromium [Cr(VI)], nitrobenzene}, aged suspensions were reacted with dithionite, and the composition and reactivity of the dithionite-treated materials were determined. NZVI aging products generally depended on pH and the presence of oxygen, whereas the amount of dithionite influenced the nature and reducing capacity of products generated from reaction with aged NZVI suspensions. Notably, air oxidation at pH ≥ 8 quickly exhausted NZVI reactivity despite preservation of significant Fe(0) in the particle core. Under these conditions, formation of a passive surface layer hindered the complete transformation of NZVI particles into iron(III) oxides, which occurred at lower pH. Reduction of this passive layer by low dithionite concentrations( 1 g/g of NZVI) restored suspension reactivity to levels equal to, and occasionally greater than, that of unaged NZVI. Multiple dithionite additions further improved pollutant removal, allowing at least a 15-fold increase in Cr(VI) removal [∼300 mg of Cr(VI)/g of NZVI] relative to that of as-received NZVI [∼20 mg of Cr(VI)/g of NZVI].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app