JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Diversity and abundance of anammox bacterial community in the deep-ocean surface sediment from equatorial Pacific.

The community structure and diversity of anaerobic ammonium oxidation (anammox) bacteria in the surface sediments of equatorial Pacific were investigated by phylogenic analysis of 16S rRNA and hydrazine oxidoreductase (hzo) genes and PCoA (principal coordinates analysis) statistical analysis. Results indicated that 16S rRNA and hzo sequences in the P2 (off the center of western Pacific warm pool) and P3 (in the eastern equatorial Pacific) sites all belong to the Candidatus "Scalindua", the dominate anammox bacteria in the low-temperature marine environment proved by previous studies. However, in the P1 site (in center of warm pool of western Pacific), large part of 16S rRNA gene sequences formed a separated cluster. Meanwhile, hzo gene sequences from P1 sediment also grouped into a single cluster. PCoA analysis demonstrated that the anammox community structure in the P1 has significant geographical distributional difference from that of P2, P3, and other marine environments based on 16S rRNA and hzo genes. The abundances of anammox bacteria in surface sediments of equatorial Pacific were quantified by q-PCR analysis of hzo genes, which ranged from 3.98 × 10(3) to 1.17 × 10(4) copies g(-1) dry sediments. These results suggested that a special anammox bacteria phylotypes exist in the surface sediment of the western Pacific warm pool, which adapted to the specific habitat and maybe involved in the nitrogen loss process from the fixed inventory in the habitat.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app