Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

A comparative study among different photochemical oxidation processes to enhance the biodegradability of paper mill wastewater.

Advanced oxidation processes including UV, UV/H(2)O(2), Fenton reaction (Fe(II)/H(2)O(2)) and photo-Fenton process (Fe(II)/H(2)O(2)/UV) for the treatment of paper mill wastewater will be investigated. A comparison among these techniques is undertaken with respect to the decrease of chemical oxygen demand (COD) and total suspended solids (TSS) and the evolution of chloride ions. Optimum operating conditions for each process under study revealed the effect of the initial amounts of Fe(II) and hydrogen peroxide. Of the tested processes, photo-Fenton process was found to be the fastest one with respect to COD and TSS reduction of the wastewater within 45 min reaction time under low amounts of Fe(II) and hydrogen peroxide of 0.5 and 1.5mg/L, respectively, and amounted to 79.6% and 96.6% COD and TSS removal. The initial biodegradability of the organic matter present in the effluent, estimated as the BOD(5)/COD, was low 0.21. When the effluent was submitted to the different types of AOPs used in this study, the biodegradability increases significantly. Within 45 min of reaction time, the photo-Fenton process appears as the most efficient process in the enhancement of the biodegradability of the organic matter in the effluent and the BOD(5)/COD ratio increased from 0.21 to 0.7.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app