JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses.

Type I core/shell quantum dots (QDs) have been shown to improve the stability and conversion efficiency of QD-sensitized solar cells compared to core only QDs. To understand how the shell thickness affects the solar cell performance, its effects on interfacial charge separation and recombination kinetics are investigated. These kinetics are measured in CdSe/ZnS type I core/shell QDs adsorbed with anthroquinone molecules (as electron acceptor) by time-resolved transient absorption spectroscopy. We show that the charge separation and recombination rates decrease exponentially with the shell thickness (d), k(d) = k(0)e(-βd), with exponential decay factors β of 0.35 ± 0.03 per Å and 0.91 ± 0.14 per Å, respectively. Model calculations show that these trends can be attributed to the exponential decrease of the 1S electron and hole densities at the QD surface with the shell thickness. The much steeper decrease in charge recombination rate results from a larger hole effective mass (than electron) in the ZnS shell. This finding suggests possible ways of optimizing the charge separation yield and lifetime by controlling the thickness and nature of the shell materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app