Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C).

The stability and reactivity of ϵ, χ, and θ iron carbide phases in Fischer-Tropsch synthesis (FTS) catalysts as a function of relevant reaction conditions was investigated by a synergistic combination of experimental and theoretical methods. Combined in situ X-ray Absorption Fine Structure Spectroscopy/X-ray Diffraction/Raman Spectroscopy was applied to study Fe-based catalysts during pretreatment and, for the first time, at relevant high pressure Fischer-Tropsch synthesis conditions, while Density Functional Theory calculations formed a fundamental basis for understanding the influence of pretreatment and FTS conditions on the formation of bulk iron carbide phases. By combining theory and experiment, it was found that the formation of θ-Fe(3)C, χ-Fe(5)C(2), and ϵ-carbides can be explained by their relative thermodynamic stability as imposed by gas phase composition and temperature. Furthermore, it was shown that a significant part of the Fe phases was present as amorphous carbide phases during high pressure FTS, sometimes in an equivalent amount to the crystalline iron carbide fraction. A catalyst containing mainly crystalline χ-Fe(5)C(2) was highly susceptible to oxidation during FTS conditions, while a catalyst containing θ-Fe(3)C and amorphous carbide phases showed a lower activity and selectivity, mainly due to the buildup of carbonaceous deposits on the catalyst surface, suggesting that amorphous phases and the resulting textural properties play an important role in determining final catalyst performance. The findings further uncovered the thermodynamic and kinetic factors inducing the ϵ-χ-θ carbide transformation as a function of the carbon chemical potential μ(C).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app