Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functional plasticity of group II metabotropic glutamate receptors in regulating spinal excitatory and inhibitory synaptic input in neuropathic pain.

Metabotropic glutamate receptors (mGluRs) are involved in the modulation of synaptic transmission and plasticity. Group II mGluRs in the spinal cord regulate glutamatergic input, but their functional changes in neuropathic pain are not clear. In this study, we determined the plasticity of spinal group II mGluRs in controlling excitatory and inhibitory synaptic transmission and nociception in neuropathic pain. Neuropathic pain was induced by spinal nerve ligation in rats, and whole-cell voltage-clamp recordings of glutamatergic excitatory postsynaptic currents (EPSCs) and spontaneous and miniature GABAergic and glycinergic inhibitory postsynaptic currents (sIPSCs and mIPSCs, respectively) were performed in spinal cord slices. The specific group II mGluR agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) had a similar inhibitory effect on monosynaptic EPSCs evoked from the dorsal root in sham and nerve-injured rats. However, DCG-IV produced a greater inhibitory effect on evoked polysynaptic EPSCs and the frequency of spontaneous EPSCs in nerve-injured rats than in control rats. Although DCG-IV similarly reduced the frequency of GABAergic sIPSCs and mIPSCs in both groups, it distinctly inhibited the frequency of glycinergic sIPSCs and mIPSCs only in nerve-injured rats. The DCG-IV effect was blocked by the group II mGluR antagonist but not by the N-methyl-D-aspartate receptor antagonist. Strikingly, intrathecal injection of DCG-IV dose-dependently attenuated allodynia and hyperalgesia in nerve-injured rats but produced hyperalgesia in control rats. Our study provides new information that nerve injury up-regulates group II mGluRs present on glutamatergic and glycinergic interneurons in the spinal cord. Activation of group II mGluRs reduces neuropathic pain probably by attenuating glutamatergic and glycinergic input to spinal dorsal horn neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app