Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington's disease

Robin J Kleiman, Lida H Kimmel, Susan E Bove, Thomas A Lanz, John F Harms, Alison Romegialli, Kenneth S Miller, Amy Willis, Shelley des Etages, Max Kuhn, Christopher J Schmidt
Journal of Pharmacology and Experimental Therapeutics 2011, 336 (1): 64-76
Inhibition of phosphodiesterase 10A (PDE10A) promotes cyclic nucleotide signaling, increases striatal activation, and decreases behavioral activity. Enhanced cyclic nucleotide signaling is a well established route to producing changes in gene expression. We hypothesized that chronic suppression of PDE10A activity would have significant effects on gene expression in the striatum. A comparison of the expression profile of PDE10A knockout (KO) mice and wild-type mice after chronic PDE10A inhibition revealed altered expression of 19 overlapping genes with few significant changes outside the striatum or after administration of a PDE10A inhibitor to KO animals. Chronic inhibition of PDE10A produced up-regulation of mRNAs encoding genes that included prodynorphin, synaptotagmin10, phosphodiesterase 1C, glutamate decarboxylase 1, and diacylglycerol O-acyltransferase and a down-regulation of mRNAs encoding choline acetyltransferase and Kv1.6, suggesting long-term suppression of the PDE10A enzyme is consistent with altered striatal excitability and potential utility as a antipsychotic therapy. In addition, up-regulation of mRNAs encoding histone 3 (H3) and down-regulation of histone deacetylase 4, follistatin, and claspin mRNAs suggests activation of molecular cascades capable of neuroprotection. We used lentiviral delivery of cAMP response element (CRE)-luciferase reporter constructs into the striatum and live animal imaging of 2-{4-[-pyridin-4-yl-1-(2,2,2-trifluoro-ethyl)-1H-pyrazol-3-yl]-phenoxymethyl}-quinoline succinic acid (TP-10)-induced luciferase activity to further demonstrate PDE10 inhibition results in CRE-mediated transcription. Consistent with potential neuroprotective cascades, we also demonstrate phosphorylation of mitogen- and stress-activated kinase 1 and H3 in vivo after TP-10 treatment. The observed changes in signaling and gene expression are predicted to provide neuroprotective effects in models of Huntington's disease.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"