JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MAPK phosphatase-3 promotes hepatic gluconeogenesis through dephosphorylation of forkhead box O1 in mice.

Insulin resistance results in dysregulated hepatic gluconeogenesis that contributes to obesity-related hyperglycemia and progression of type 2 diabetes mellitus (T2DM). Recent studies show that MAPK phosphatase-3 (MKP-3) promotes gluconeogenic gene transcription in hepatoma cells, but little is known about the physiological role of MKP-3 in vivo. Here, we have shown that expression of MKP-3 is markedly increased in the liver of diet-induced obese mice. Consistent with this, adenovirus-mediated MKP-3 overexpression in lean mice promoted gluconeogenesis and increased fasting blood glucose levels. Conversely, shRNA knockdown of MKP-3 in both lean and obese mice resulted in decreased fasting blood glucose levels. In vitro experiments identified forkhead box O1 (FOXO1) as a substrate for MKP-3. MKP-3-mediated dephosphorylation of FOXO1 at Ser256 promoted its nuclear translocation and subsequent recruitment to the promoters of key gluconeogenic genes. In addition, we showed that PPARγ coactivator-1α (PGC-1α) acted downstream of FOXO1 to mediate MKP-3-induced gluconeogenesis. These data indicate that MKP-3 is an important regulator of hepatic gluconeogenesis in vivo and suggest that inhibition of MKP-3 activity may provide new therapies for T2DM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app