JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Four weeks administration of Liraglutide improves memory and learning as well as glycaemic control in mice with high fat dietary-induced obesity and insulin resistance.

AIM: Liraglutide is a long-acting glucagon-like peptide-1 (GLP-1) mimetic which is a treatment option for type 2 diabetes. GLP-1 peptides, including Liraglutide, cross the blood-brain barrier and may additionally act to improve brain function. The present study tested the hypothesis that, in addition to its antihyperglycaemic actions, peripheral administration of Liraglutide exerts positive actions on cognitive function in mice with high fat dietary-induced obesity and insulin resistance.

METHODS: Young Swiss TO mice maintained on high fat diet for 20 weeks received twice-daily injections of Liraglutide (200 µg/kg bw; sc) or saline vehicle over 28 days. An additional group of mice on standard diet received twice-daily saline injections. Energy intake, bodyweight, non-fasting plasma glucose and insulin concentrations were monitored at regular intervals. Glucose tolerance, open field assessment, object recognition testing and electrophysiological long-term potentiation (LTP) were performed at termination of the study.

RESULTS: Liraglutide treatment resulted in significant time-dependent reduction in bodyweight and energy intake, whilst improving non-fasting glucose and normalizing glucose tolerance. Although Liraglutide did not alter general behaviour, treated mice exhibited marked increase in recognition index (RI) during object recognition testing, indicative of enhanced learning and memory ability. Furthermore, Liraglutide rescued the deleterious effects of high fat diet on hippocampal LTP of neurotransmission following both chronic and direct intracerebroventricular (icv) administration.

CONCLUSION: Liraglutide administered peripherally not only improves metabolic parameters but exerts additional beneficial effects on cognitive function and hippocampal synaptic plasticity. Whether therapy with GLP-1 mimetics has similar effects in humans with type 2 diabetes needs to be established.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app