Add like
Add dislike
Add to saved papers

Differential localization of ATM is correlated with activation of distinct downstream signaling pathways.

Cell Cycle 2010 September 16
ATM, the gene mutated in the genetic disease ataxia telangiectasia (AT), is a well-known protein involved in the DNA double-strand break response, where it plays an important role in sensing damage and signaling to DNA repair machinery and cell cycle checkpoints. However, a number of recent papers, including ours have found that ATM also plays important roles outside of the nucleus, which may explain some of the phenotypic features seen in AT patients. Our research into mechanisms of TSC2 regulation helped uncover a pathway upstream of TSC2 that is regulated by cytoplasmic ATM in response to ROS initiated by ATM activation of LKB1 and AMPK. We found that TSC2 activation results in mTORC1 repression and subsequent induction of autophagy. Elucidation of this stress response pathway provides a molecular mechanism for ATM signaling in the cytoplasm and lays the groundwork for further studies on how ATM activity is regulated beyond DNA damage in different cellular compartments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app