JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hypermethylation of PTGER2 confers prostaglandin E2 resistance in fibrotic fibroblasts from humans and mice.

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease that is characterized by excessive proliferation of fibroblasts. The lipid mediator prostaglandin E2 (PGE2) has the capacity to limit fibrosis through its inhibition of numerous functions of these fibroblasts; however, in the setting of fibrosis, fibroblasts have been shown to be resistant to PGE2. We have linked such resistance to decreased expression levels of the E prostanoid 2 (EP2) receptor. In this study, in fibroblasts from both mice and humans with pulmonary fibrosis, we show that DNA hypermethylation is responsible for diminished EP2 expression levels and PGE2 resistance. Bisulfite sequencing of the prostaglandin E receptor 2 gene (PTGER2) promoter revealed that fibrotic fibroblasts exhibit greater PTGER2 methylation than nonfibrotic control cells. Treatment with the DNA methylation inhibitors 5-aza-2'-deoxycytidine and zebularine as well as DNA methyltransferase-specific siRNA decreased PTGER2 methylation, increased EP2 mRNA and protein expression levels, and restored PGE2 responsiveness in fibrotic fibroblasts but not in nonfibrotic controls. PTGER2 promoter hypermethylation was driven by an increase in Akt signal transduction. In addition to results described for the PTGER2 promoter, fibrotic fibroblasts also exhibited increased global DNA methylation. These findings demonstrate that the down-regulation of PTGER2 and consequent PGE2 resistance are both mediated by DNA hypermethylation; we identified increased Akt signal transduction as a novel mechanism that promotes DNA hypermethylation during fibrogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app