Add like
Add dislike
Add to saved papers

Gimeracil, a component of S-1, may enhance the antitumor activity of X-ray irradiation in human cancer xenograft models in vivo.

Oncology Reports 2010 November
Chemoradiotherapy is a useful treatment strategy in patients with locally advanced cancers. In particular, combination of 5-fluorouracil (5-FU) with X-ray irradiation is effective for the treatment of some types of gastrointestinal cancers. We investigated the antitumor effects of combination treatment with X-ray and S-1, a unique formulation of 5-FU, on human cancer xenografts in nude mice and compared the efficacy of this treatment to that of radiotherapy combined with cisplatin, UFT, another oral 5-FU prodrug, and intravenous 5-FU. Tumors implanted into the left hind legs of mice were treated with a dose of 2 or 5 Gy X-ray irradiation on days 1 and 8, and S-1, UFT and 5-FU were administered for 14 days. The efficacy of combined treatment with 8.3 mg/kg S-1 and 2 Gy X-ray irradiation in treating non-small cell lung cancer xenografts (Lu-99 and LC-11) was significantly higher than that of treatment with S-1 alone or 2 Gy X-ray irradiation alone, and the antitumor activity of combined treatment was similar to that of 5 Gy X-ray irradiation alone. Although 8.3 mg/kg S-1 and 17.5 mg/kg UFT had equivalent antitumor activity; the antitumor efficacy of combination treatment with S-1 and 2 Gy X-ray irradiation on LC-11 tumors was significantly higher than that of combination treatment with UFT and 2 Gy X-ray irradiation. Combination treatment with S-1 and X-ray irradiation was also more effective against pancreatic tumors than combination treatment with intravenous 5-FU and X-ray irradiation. To elucidate the reason for the increased antitumor efficacy of combination treatment with S-1 and X-ray irradiation, the antitumor effect of gimeracil, one of the components of S-1, was tested in combination with 2 Gy X-ray irradiation. These experiments demonstrated that gimeracil enhanced the efficacy of X-ray irradiation against lung as well as head and neck cancer xenografts in a dose-dependent manner. Furthermore, we observed decreased expression of γ-H2AX protein, a marker of DNA repair, in LC-11 tumors treated with X-ray irradiation and gimeracil compared to that observed in tumors treated with X-ray irradiation alone, suggesting that gimeracil may inhibit rapid repair of X-ray-induced DNA damage in tumors. The present study suggests that chemoradiotherapy using S-1 acts through a novel mechanism and may prove useful in treating patients with locally advanced cancers whose disease progression is difficult to control using chemotherapy alone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app