JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High-throughput UHPLC-MS/MS method for the detection, quantification and identification of fifty-five anabolic and androgenic steroids in equine plasma.

Anabolic and androgenic steroids (AASs) are synthetic substances related to the primary male sex hormone, testosterone. AASs can be abused in both human and equine sports and, thus, are banned by the International Olympic Committee and the Association of Racing Commissioners International (ARCI). Enforcement of the ban on the use of AASs in racehorses during competition requires a defensible and robust method of analysis. To address this requirement, a high-throughput ultra high-performance liquid chromatography-mass spectrometric (UHPLC-MS) method was developed for the detection, quantification and confirmation of 55 AASs in equine plasma. AASs were recovered from equine plasma samples by liquid-liquid extraction with methyl tert-butyl ether (MTBE). Analytes were chromatographically separated on a sub-2 µm particle size C(18) column with a mobile phase gradient elution and detected by selected-reaction monitoring (SRM) on a triple quadrupole mass spectrometer. AASs with isobaric precursor ions were either chromatographically resolved or mass spectrometrically differentiated by unique precursor-to-product ion transitions. A few of them that could not be resolved by both approaches were differentiated by intensity ratios of three major product ions. All the epimer pairs, testosterone and epitestosterone, boldenone and epiboldenone, nandrolone and epinandrolone, were chromatographically base-line separated. The limit of detection and that of quantification was 50 pg/ml for most of the AASs, and the limit of confirmation was 100-500 pg/ml. Full product ion spectra of AASs at concentrations as low as 100-500 pg/ml in equine plasma were obtained using the triple quadrupole instrument, to provide complementary evidentiary data for confirmation. The method is sensitive and selective for the detection, quantification and confirmation of multiple AASs in a single analysis and will be useful in the fight against doping of racehorses with AASs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app