JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rg1 protects iron-induced neurotoxicity through antioxidant and iron regulatory proteins in 6-OHDA-treated MES23.5 cells.

Ginsenoside-Rg1 is one of the pharmacologically active components isolated from ginseng. It was reported that Rg1 protected dopamine (DA) neurons in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) models in vivo and in vitro. Our previous study also demonstrated that iron accumulation was involved in the toxicity of 6-OHDA. However, whether Rg1 could protect DA neurons against 6-OHDA toxicity by modulating iron accumulation and iron-induced oxidative stress is not clear. Therefore, the present study was carried out to elucidate this effect in 6-OHDA-treated MES23.5 cells and the possible mechanisms were also conducted. Findings showed Rg1 restored iron-induced decrease in mitochondrial transmembrane potential in MES23.5 cells, and increased ferrous iron influx was found in 6-OHDA-treated cells. Rg1 pretreatment could decrease this iron influx by inhibiting 6-OHDA-induced up-regulation of an iron importer protein divalent metal transporter 1 with iron responsive element (DMT1 + IRE). Furthermore, findings also showed that the effect of Rg1 on DMT1 + IRE expression was due to its inhibition of iron regulatory proteins (IRPs) by its antioxidant effect. These results suggested that the neuroprotective effect of Rg1 against iron toxicity in 6-OHDA-treated cells was to decrease the cellular iron accumulation and attenuate the improper up-regulation of DMT1 + IRE via IRE/IRP system. This provides new insight to understand the pharmacological effects of Rg1 on iron-induced degeneration of DA neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app