Systemic cannabinoids produce CB₁-mediated antinociception by activation of descending serotonergic pathways that act upon spinal 5-HT(7) and 5-HT(2A) receptors

Melik Seyrek, Serdar Kahraman, Mehmet Salih Deveci, Ozgur Yesilyurt, Ahmet Dogrul
European Journal of Pharmacology 2010 December 15, 649 (1): 183-94
Serotonin (5-HT) plays an important role in the descending control of pain. We evaluated the role of descending serotonergic pathways and spinal 5-HT₇ and 5-HT(2A) receptors in comparison to that of 5-HT(1A) and 5-HT₃ receptors in the antinociceptive effects of systemically administered cannabinoids. Antinociceptive effects were evaluated by radiant heat tail-flick and hot plate tests in Balb-C mice. The selective CB₁ receptor agonist, ACEA; a mixed CB₁ and CB₂ receptor agonist, WIN 55,212-2; and a selective CB₂ receptor agonist, GW405833, were given systemically to induce antinociception. Spinal 5-HT was depleted with intrathecal ( injection of 5,7-dihydroxytryptamine (5,7-DHT). Bilateral surgical lesions of the dorsolateral funiculus were performed. Selective 5-HT₇, 5-HT(2A), 5-HT(1A) and 5-HT₃ antagonists-SB-269970, ketanserin, WAY 100635 and ondansetron, respectively-were administered Risperidone, an atypical antipsychotic displaying 5-HT(2A) antagonism, also irreversibly binds to and inactivates the 5-HT₇ receptors. Thus, we also injected risperidone to elucidate the role of spinal 5-HT₇ and 5-HT(2A) receptors in cannabinoid-mediated antinociception. WIN 55,212-2 and ACEA produced dose-dependent antinociception, which were reversed by selective CB₁ receptor antagonist rimonabant. GW405833 did not produce any antinociception. The antinociceptive effects of WIN 55,212-2 and ACEA were totally absent in spinal 5-HT depleted and dorsolateral funiculus lesioned mice. administration of SB-269970, ketanserin, and risperidone, but not WAY 100635 or ondansetron, blocked both WIN 55,212-2- and ACEA-induced antinociception. These findings suggest that systemically administered cannabinoids interact with descending serotonergic pathways via CB₁-mediated mechanisms and exert a central antinociceptive effect involving spinal 5-HT₇ and 5-HT(2A) receptors.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"