JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Spin-flip time dependent density functional theory applied to excited states with single, double, or mixed electron excitation character.

Journal of Chemical Physics 2010 September 22
We analyze the ability of spin-flip time dependent density functional theory (TD-DFT) to uniformly describe excited states of single, double, and mixed excitation character in closed-shell molecular systems, using the polyene oligomers as a primary test case. The results of comparison between conventional and spin-flip TD-DFT and with correlated ab initio methods indicate that spin-flip TD-DFT provides a more consistent description of the ordering and relative positions of the excited states than conventional TD-DFT provided a suitable exchange-correlation functional is used in the calculations. It is found that spin-flip TD-DFT provides a physically appealing picture of excitation processes which involve one or two electrons, as it captures their most important features and facilitates a more uniform description of excited states with different character. This makes spin-flip TD-DFT a promising approach for general modeling of excited states and spectra of medium and large size molecules, which exhibit low-lying excited states with strong double excitation character.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app