JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Alterations in the central CRF system of two different rat models of comorbid depression and functional gastrointestinal disorders.

Clinical evidence suggests comorbidity between depression and irritable bowel syndrome (IBS). Early-life stress and genetic predisposition are key factors in the pathophysiology of both IBS and depression. Thus, neonatal maternal separation (MS), and the Wistar-Kyoto (WKY) rat, a genetically stress-sensitive rat strain, are two animal models of depression that display increased visceral hypersensitivity and alterations in the hypothalamic-pituitary-adrenal axis. Corticotrophin-releasing factor (CRF) is the primary peptide regulating this axis, acting through two receptors: CRF1 and CRF2. The central CRF system is also a key regulator in the stress response. However, there is a paucity of studies investigating alterations in the central CRF system of adult MS or WKY animals. Using in-situ hybridization we demonstrate that CRF mRNA is increased in the paraventricular nucleus (PVN) of WKY rats and the dorsal raphé nucleus (DRN) of MS animals, compared to Sprague-Dawley and non-separated controls, respectively. Additionally, CRF1 mRNA was higher in the PVN, amygdala and DRN of both animal models, along with high levels of CRF1 mRNA in the hippocampus of WKY animals compared to control animals. Finally, CRF2 mRNA was lower in the DRN of MS and WKY rats compared to control animals, and in the hippocampus and amygdala of MS rats. These results show that the central CRF system is altered in both animal models. Such alterations may affect HPA axis regulation, contribute to behavioural changes associated with stress-related disorders, and alter the affective component of visceral pain modulation, which is enhanced in IBS patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app