JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition.

With increasing use of plant-derived cancer chemotherapeutic agents, exploring the antiproliferative effects of phytochemicals has gained increasing momentum for anticancer drug design. The dietary phytochemical quercetin, modulates several signal transduction pathways associated with cell proliferation and apoptosis. The present study was undertaken to examine the effect of quercetin on cell viability, and to determine the molecular mechanism of quercetin-induced cell death by investigating the expression of Bcl-2 family proteins (Bcl-2, Bcl-xL, Mcl1, Bax, Bad, p-Bad), cytochrome C, Apaf-1, caspases, and survivin as well as the cell cycle regulatory proteins (p53, p21, cyclin D1), and NF-κB family members (p50, p65, IκB, p-IκB-α, IKKβ and ubiquitin ligase) in human cervical cancer (HeLa) cells. The results demonstrate that quercetin suppressed the viability of HeLa cells in a dose-dependent manner by inducing G2/M phase cell cycle arrest and mitochondrial apoptosis through a p53-dependent mechanism. This involved characteristic changes in nuclear morphology, phosphatidylserine externalization, mitochondrial membrane depolarization, modulation of cell cycle regulatory proteins and NF-κB family members, upregulation of proapoptotic Bcl-2 family proteins, cytochrome C, Apaf-1 and caspases, and downregulation of antiapoptotic Bcl-2 proteins and survivin. Quercetin that exerts opposing effects on different signaling networks to inhibit cancer progression is a classic candidate for anticancer drug design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app