JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors.

Molecular Pharmaceutics 2010 December 7
The purpose of this work was to evaluate the potential of HAIYPRH (T7) peptide as a ligand for constructing tumor-targeting drug delivery systems. T7 could target to transferrin-receptor (TfR) through a cavity on the surface of TfR and then transport into cells via endocytosis with the help of transferrin (Tf). In this study, T7-conjugated poly(ethylene glycol) (PEG)-modified polyamidoamine dendrimer (PAMAM) (PAMAM-PEG-T7) was successfully synthesized and further loaded with doxorubicin (DOX), formulating PAMAM-PEG-T7/DOX nanoparticles (NPs). In vitro, almost 100% of DOX was released during 2 h in pH 5.5, while only 55% of DOX was released over 48 h in pH 7.4. The cellular uptake of DOX could be significantly enhanced when treated with T7-modified NPs in the presence of Tf. Also, the in vitro antitumor effect was enhanced markedly. The IC(50) of PAMAM-PEG-T7/DOX NPs with Tf was 231.5 nM, while that of NPs without Tf was 676.7 nM. T7-modified NPs could significantly enhance DOX accumulation in the tumor by approximately 1.7-fold compared to that of unmodified ones and by approximately 5.3-fold compared to that of free DOX. For in vivo antitumor studies, tumor growth of mice treated with PAMAM-PEG-T7/DOX NPs was significantly inhibited compared to that of mice treated with PAMAM-PEG/DOX NPs and saline. The study provides evidence that PAMAM-PEG-T7 can be applied as a potential tumor-targeting drug delivery system. T7 may be a promising ligand for targeted drug delivery to the tumor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app