Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

CXCR3-B can mediate growth-inhibitory signals in human renal cancer cells by down-regulating the expression of heme oxygenase-1.

The chemokine receptor CXCR3 may play a critical role in the growth and metastasis of tumor cells, including renal tumors. It has been shown that CXCR3 has two splice variants with completely opposite functions; CXCR3-A promotes cell proliferation, whereas CXCR3-B inhibits cell growth. We recently demonstrated that the expression of growth-promoting CXCR3-A is up-regulated, and the growth-inhibitory CXCR3-B is markedly down-regulated in human renal cancer tissues; and the overexpression of CXCR3-B in renal cancer cells can significantly inhibit cell proliferation. However, the growth-inhibitory signal(s) through CXCR3-B are not well characterized. Here, we investigated the effector molecule(s) involved in CXCR3-B-mediated signaling events. We found that the overexpression of CXCR3-B in human renal cancer cells (Caki-1) promoted cellular apoptosis as observed by FACS analysis through Annexin-V staining. To examine whether the overexpression of CXCR3-B could alter the expression of any apoptosis-related genes in renal cancer cells, we performed a protein array. We found that CXCR3-B overexpression significantly down-regulated the expression of antiapoptotic heme oxygenase-1 (HO-1). By utilizing a HO-1 promoter-luciferase plasmid, we showed that CXCR3-B-mediated down-regulation of HO-1 was controlled at the transcriptional level as observed by luciferase assay. We also demonstrated that the inhibition of HO-1 expression using siRNA promoted apoptosis of renal cancer cells. Finally, we observed that human renal cancer tissues expressing low amounts of CXCR3-B significantly overexpress HO-1 at both mRNA and protein level. Together, we suggest that the overexpression of CXCR3-B may prevent the growth of renal tumors through the inhibition of antiapoptotic HO-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app