Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater.

Nanoscale zero-valent iron (NZVI) was successfully entrapped in chitosan (CS) beads for reduction of Cr (VI) from wastewater. The removal mechanism may include both physical adsorption of Cr (VI) on the surface or inside of CS-NZVI beads and subsequent reduction of Cr (VI) to Cr (III). The free amino groups and hydroxyl groups on CS may contribute little to hinder the formation of Fe(III)-Cr(III) precipitate. Entrapment of NZVI in CS beads prevents the particles from aggregation and oxidation. The results indicate that there is no significant difference between the reaction rates of bare NZVI and entrapped NZVI. Cr (VI) reduction kinetics follows a pseudo-first-order rate expression. The reduction capacity for Cr (VI) increases with increasing temperature and NZVI dosage but decreases with the increase in initial concentration of Cr (VI) and pH values. This study demonstrates that entrapment of NZVI in CS beads has the potential to become a promising technique for in situ groundwater remediation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app