The neuro-steroid, 5-androstene 3β,17α diol; induces endoplasmic reticulum stress and autophagy through PERK/eIF2α signaling in malignant glioma cells and transformed fibroblasts

Wentao Jia, Roger M Loria, Margaret A Park, Adly Yacoub, Paul Dent, Martin R Graf
International Journal of Biochemistry & Cell Biology 2010, 42 (12): 2019-29
In this study, we identified a mechanism by which the neuro-steroid, 5-androstene 3β,17α diol (17α-AED) induces autophagy in human malignant glioma cells and transformed fibroblasts. 17α-AED treatment induced endoplasmic reticulum (ER) stress, identified by the partial activation of an unfolded protein response in T98G, U87MG, U251MG, LN-18, LN-229 and LN-Z308 glioma cell lines. In this regard, there were increased levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and glucose-regulated protein of 78kDa transcripts but no splicing of X-box-binding protein 1 mRNA or processing of activating transcription factor-6 in glioma cells treated with the neuro-steroid. 17α-AED induced eukaryotic translational initiation factor 2α (eIF2α) phosphorylation in glioma cells which correlated with microtubule-associated protein-light chain 3 (LC3) conversion from LC3-I to -II. In transformed murine embryonic fibroblasts (MEFs) that are deficient of eIF2α function or T98G glioma cells transfected with a dominant-negative eIF2α construct, 17α-AED induced LC3 conversion was significantly reduced as compared to control cells. Neuro-steroid treatment caused the activation of the eIF2α kinase, protein kinase-like ER kinase (PERK) but not other eIF2α kinases in glioma cells. Moreover, eIF2α phosphorylation and LC3 conversion, in response to 17α-AED treatment, was blocked in MEFs that lacked PERK activity. T98G cells transfected with a dominant-negative PERK construct exhibited an attenuated response to neuro-steroid treatment in terms of decreases in: eIF2α activation; CHOP expression; the incidence of autophagy; and cytotoxicity. These results demonstrate that ER stress is linked to 17α-AED induced autophagy by PERK/eIF2α signaling in human malignant glioma cells and transformed fibroblasts.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"