Add like
Add dislike
Add to saved papers

Sex differences play a role in cardiac endoplasmic reticulum stress (ERS) and ERS-initiated apoptosis induced by pressure overload and thapsigargin.

Excessive endoplasmic reticulum stress (ERS) triggers myocardial apoptosis. Sex differences appear to be an important determinant in the occurrence of stress and apoptosis through many pathways, but the roles of sex differences in the cardiac ERS and ERS-initiated apoptosis are largely unknown. In the present study, we investigated the in vivo role of sex differences in the cardiac ERS and apoptosis elicited by ascending aortic banding surgery or thapsigargin (Thap) injection using male and female C57BL/6 JAX mice. The surgery significantly increased the expression levels of cardiac glucose-regulated protein (GRP)78 and CCAAT/enhancer binding protein homology protein (CHOP) protein, increased the myocardial apoptosis and decreased the sarcoplasmic reticulum Ca(2+)-ATPase isoform (SERCA)2 immunoreactivity in the male mice relative to female mice. Furthermore, during ERS induction using Thap, myocardial apoptosis and the expression levels of cardiac GRP78, inositol-requiring enzyme (Ire)1α and tumor necrosis factor receptor-associated factor (TRAF)2 were significantly increased in male mice relative to female mice. Sex differences significantly affected the above results. Our data suggest that sex differences affected the response of myocardial tissues in dealing with cardiac ERS and further result of ERS, apoptosis, at least in part through the regulation of SERCA2, CHOP, Ire1α and TRAF2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app