Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release.

Molecular Pharmaceutics 2010 December 7
Studies were conducted to develop antibody- and fluorescence-labeled superparamagnetic iron oxide nanoparticle (SPIO) nanotheranostics for magnetic resonance imaging (MRI) and fluorescence imaging of cancer cells and pH-dependent intracellular drug release. SPIO nanoparticles (10 nm) were coated with amphiphilic polymers and PEGylated. The antibody HuCC49ΔCH2 and fluorescent dye 5-FAM were conjugated to the PEG of iron oxide nanoparticles (IONPs). Anticancer drugs doxorubicin (Dox), azido-doxorubicin (Adox), MI-219, and 17-DMAG containing primary amine, azide, secondary amine, and tertiary amine, respectively, were encapsulated into IONPs. The encapsulation efficiency and drug release at various pHs were determined using LC-MS/MS. The cancer targeting and imaging were monitored using MRI and fluorescent microscopy in a colon cancer cell line (LS174T). The pH-dependent drug release, intracellular distribution, and cytotoxicity were evaluated using microscopy and MTS assay. The PEGylation of SPIO and conjugation with antibody and 5-FAM increased SPIO size from 18 to 44 nm. Fluorescent imaging, magnetic resonance imaging (MRI) and Prussian blue staining demonstrated that HuCC49ΔCH2-SPIO increased cancer cell targeting. HuCC49ΔCH2-SPIO nanotheranostics decreased the T(2) values in MRI of LS174T cells from 117.3 ± 1.8 ms to 55.5 ± 2.6 ms. The loading capacities of Dox, Adox, MI-219, and 17-DMAG were 3.16 ± 0.77%, 6.04 ± 0.61%, 2.22 ± 0.42%, and 0.09 ± 0.07%, respectively. Dox, MI-219 and 17-DMAG showed pH-dependent release while Adox did not. Fluorescent imaging demonstrated the accumulation of HuCC49ΔCH2-SPIO nanotheranostics in endosomes/lysosomes. The encapsulated Dox was released in acidic lysosomes and diffused into cytosol and nuclei. In contrast, the encapsulated Adox only showed limited release in endosomes/lysosomes. HuCC49ΔCH2-SPIO nanotheranostics target-delivered more Dox to LS174T cells than nonspecific IgG-SPIO and resulted in a lower IC(50) (1.44 μM vs 0.44 μM). The developed HuCC49ΔCH2-SPIO nanotheranostics provides an integrated platform for cancer cell imaging, targeted anticancer drug delivery and pH-dependently drug release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app