Add like
Add dislike
Add to saved papers

Mature B cells are critical to T-cell-mediated tumor immunity induced by an agonist anti-GITR monoclonal antibody.

An agonistic antibody DTA-1, to glucocorticoid-induced TNFR-related protein (GITR), induces T-cell activation and antitumor immunity. CD4(+) effector T cells are essential in initiating GITR-induced immune activation, and the sequentially activated cytolytic CD8(+) T cells are sufficient to induce tumor rejection. Administration of DTA-1 to a tumor-bearing mouse also induces B-cell activation illustrated by CD69 expression. Substantial evidence suggests that resting B cells are tumor promoting, which has prompted the idea of B-cell depletion by Rituximab, to be combined with other agents in the clinic to augment antitumor response. In this study, we have found that mature B cells are needed for the mechanism of anti-GITR agonist to kill tumors. The treatment of GITR agonist induces profound B-cell activation, differentiation, and antibody production. In a mature B-cell-deficient mouse (JHD), DTA-1 fails to induce tumor regression with a reduced early activation of CD4(+) and CD8(+) T cells. B-cell deficiency disables the capability of the DTA-1 in generating cytolytic CD8(+) T cells and significantly reduces the cytokine production in tumor bearing mice. The tumor-killing activities of DTA-1 are still present albeit reduced in the CD40(-/-) mice, in which IgG production is impaired. We have also shown that the dependence on B cells to kill tumors differentiates GITR costimulation from CTLA4 blockade and OX40 agonism in tumor immunotherapy. The findings underscore the reciprocal T-cell-B-cell interaction to enhance antitumor immunity upon GITR costimulation. The results provide the insight that attenuating B-cell functions may not be beneficial in cancer immunotherapy based on GITR agonism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app