Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Aggressive fibromatosis (desmoid tumor) is derived from mesenchymal progenitor cells.

Cancer Research 2010 October 2
The cellular origins from which most tumors arise are poorly defined, especially in mesenchymal neoplasms. Aggressive fibromatosis, also known as desmoid tumor, is a locally invasive soft tissue tumor that has mesenchymal characteristics. We found that aggressive fibromatosis tumors express genes and cell surface markers characteristic of mesenchymal stem cells (MSC). In mice that are genetically predisposed to develop aggressive fibromatosis tumors (Apc(wt/1638N)), we found that the number of tumors formed was proportional to the number of MSCs present. Sca-1(-/-) mice, which develop fewer MSCs, were crossed with Apc(wt/1638N) mice. Doubly mutant mice deficient in Sca-1 developed substantially fewer aggressive fibromatosis tumors than wild-type (WT) littermates, but Sca-1 deficiency had no effect on the formation of epithelial-derived intestinal polyps. MSCs isolated from Apc(wt/1638N) mice (or mice expressing a stabilized form of β-catenin) induced aberrant cellular growth reminiscent of aggressive fibromatosis tumors after engraftment to immunocompromised mice, but WT cells and mature fibroblasts from the same animals did not. Taken together, our findings indicate that aggressive fibromatosis is derived from MSCs, and that β-catenin supports tumorigenesis by maintaining mesenchymal progenitor cells in a less differentiated state. Protecting this progenitor cell population might prevent tumor formation in patients harboring a germline APC mutation, where fibromatosis is currently the leading cause of mortality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app