Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Numerical, hydraulic, and hemolytic evaluation of an intravascular axial flow blood pump to mechanically support Fontan patients.

Currently available mechanical circulatory support systems are limited for adolescent and adult patients with a Fontan physiology. To address this growing need, we are developing a collapsible, percutaneously-inserted, axial flow blood pump to support the cavopulmonary circulation in Fontan patients. During the first phase of development, the design and experimental evaluation of an axial flow blood pump was performed. We completed numerical modeling of the pump using computational fluid dynamics analysis, hydraulic testing of a plastic pump prototype, and blood bag experiments (n=7) to measure the levels of hemolysis produced by the pump. Statistical analyses using regression were performed. The prototype with a 4-bladed impeller generated a pressure rise of 2-30 mmHg with a flow rate of 0.5-4 L/min for 3000-6000 RPM. A comparison of the experimental performance data to the numerical predictions demonstrated an excellent agreement with a maximum deviation being less than 6%. A linear increase in the plasma-free hemoglobin (pfHb) levels during the 6-h experiments was found, as desired. The maximum pfHb level was measured to be 21 mg/dL, and the average normalized index of hemolysis was determined to be 0.0097 g/100 L for all experiments. The hydraulic performance of the prototype and level of hemolysis are indicative of significant progress in the design of this blood pump. These results support the continued development of this intravascular pump as a bridge-to-transplant, bridge-to-recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction for Fontan patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app