Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impaired fracture healing in macrophage migration inhibitory factor-deficient mice.

UNLABELLED: This study investigated the role of macrophage migration inhibitory factor (MIF) in fracture repair using MIF gene-deficient mice (MIF KO). Fracture healing was delayed in MIF KO, and this was mainly due to the delay in the mineralization of osteoid within the fracture callus.

INTRODUCTION: We previously reported that the expression of macrophage migration inhibitory factor (MIF) was up-regulated during the fracture healing process in rats. However, its role in the pathophysiology of this process remained unclear. The aim of the present study was to clarify the role of MIF in the fracture healing process using MIF gene-deficient mice (MIF KO).

METHODS: Bone repair in wild-type mice (WT) and MIF KO (n = 70, respectively) was investigated using a tibia fracture model. Radiographic, biomechanical, histological, bone histomorphometric, and molecular analyses were performed.

RESULTS: Post-fracture biomechanical testing showed that maximum load and stiffness were significantly lower in MIF KO than in WT on day 42. However, similar levels were observed between the two groups on day 84. Bone histomorphometric analysis revealed significantly higher osteoid volume, a lower mineral apposition rate, and smaller numbers of osteoclasts in the MIF KO callus compared to the WT callus. The messenger ribonucleic acid expressions of matrix metalloproteinase (MMP)-2, membranous type 1-MMP, cathepsin K, and tissue nonspecific alkaline phosphatase were found to be significantly suppressed in the MIF KO callus.

CONCLUSION: The results of the present study suggest that delayed fracture healing in MIF KO was mainly attributable to a delay in osteoid mineralization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app