Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A critical role of integrin-linked kinase, ch-TOG and TACC3 in centrosome clustering in cancer cells.

Oncogene 2011 Februrary 4
Many cancer cells contain more than two centrosomes, which imposes a potential for multipolar mitoses, leading to cell death. To circumvent this, cancer cells develop mechanisms to cluster supernumerary centrosomes to form bipolar spindles, enabling successful mitosis. Disruption of centrosome clustering thus provides a selective means of killing supernumerary centrosome-harboring cancer cells. Although the mechanisms of centrosome clustering are poorly understood, recent genetic analyses have identified requirements for both actin and tubulin regulating proteins. In this study, we demonstrate that the integrin-linked kinase (ILK), a protein critically involved in actin and mitotic microtubule organization, is required for centrosome clustering. Inhibition of ILK expression or activity inhibits centrosome clustering in several breast and prostate cancer cell lines that have centrosome amplification. Furthermore, cancer cells with supernumerary centrosomes are significantly more sensitive to ILK inhibition than cells with two centrosomes, demonstrating that inhibiting ILK offers a selective means of targeting cancer cells. Live cell analysis shows ILK perturbation leads cancer cells to undergo multipolar anaphases, mitotic arrest and cell death in mitosis. We also show that ILK performs its centrosome clustering activity in a focal adhesion-independent, but centrosome-dependent, manner through the microtubule regulating proteins TACC3 and ch-TOG. In addition, we identify a specific TACC3 phosphorylation site that is required for centrosome clustering and demonstrate that ILK regulates this phosphorylation in an Aurora-A-dependent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app