JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Honokiol, a phytochemical from the Magnolia plant, inhibits photocarcinogenesis by targeting UVB-induced inflammatory mediators and cell cycle regulators: development of topical formulation.

Carcinogenesis 2010 November
To develop newer and more effective chemopreventive agents for skin cancer, we assessed the effect of honokiol, a phytochemical from the Magnolia plant, on ultraviolet (UV) radiation-induced skin tumorigenesis using the SKH-1 hairless mouse model. Topical treatment of mice with honokiol in a hydrophilic cream-based topical formulation before or after UVB (180 mJ/cm(2)) irradiation resulted in a significant protection against photocarcinogenesis in terms of tumor multiplicity (28-60%, P < 0.05 to <0.001) and tumor volume per tumor-bearing mouse (33-80%, P < 0.05 to 0.001, n = 20). Honokiol also inhibited and delayed the malignant progression of papillomas to carcinomas. To investigate the in vivo molecular targets of honokiol efficacy, tumors and tumor-uninvolved skin samples from the tumor-bearing mice were analyzed for inflammatory mediators, cell cycle regulators and survival signals using immunostaining, western blotting and enzyme-linked immunosorbent assay. Treatment with honokiol significantly inhibited UVB-induced expression of cyclooxygenase-2, prostaglandin E(2) (P < 0.001), proliferating cell nuclear antigen and proinflammatory cytokines, such as tumor necrosis factor-α (P < 0.001), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.001) in the skin as well as in skin tumors. Western blot analysis revealed that honokiol: (i) inhibited the levels of cyclins D1, D2 and E and associated cyclin-dependent kinases (CDKs)2, CDK4 and CDK6, (ii) upregulated Cip/p21 and Kip/p27 and (iii) inhibited the levels of phosphatidylinositol 3-kinase and the phosphorylation of Akt at Ser(473) in UVB-induced skin tumors. Together, our results indicate that honokiol holds promise for the prevention of UVB-induced skin cancer by targeting inflammatory mediators, cell cycle regulators and cell survival signals in UVB-exposed skin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app