JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An experimentally validated micromechanical model of a rat vertebra under compressive loading.

Journal of Anatomy 2011 January
In recent years, finite element analysis (FEA) has been increasingly applied to examine and predict the mechanical behaviour of craniofacial and other bony structures. Traditional methods used to determine material properties and validate finite element models (FEMs) have met with variable success, and can be time-consuming. An implicit assumption underlying many FE studies is that relatively high localized stress/strain magnitudes identified in FEMs are likely to predict material failure. Here we present a new approach that may offer some advantages over previous approaches. Recently developed technology now allows us to both image and conduct mechanical tests on samples in situ using a materials testing stage (MTS) fitted inside the microCT scanner. Thus, micro-finite element models can be created and validated using both quantitative and qualitative means. In this study, a rat vertebra was tested under compressive loading until failure using an MTS. MicroCT imaging of the vertebra before mechanical testing was used to create a high resolution finite element model of the vertebra. Load-displacement data recorded during the test were used to calculate the effective Young's modulus of the bone (found to be 128 MPa). The microCT image of the compressed vertebra was used to assess the predictive qualities of the FE model. The model showed the highest stress concentrations in the areas that failed during the test. Clearly, our analyses do not directly address biomechanics of the craniofacial region; however, the methodology adopted here could easily be applied to examine the properties and behaviour of specific craniofacial structures, or whole craniofacial regions of small vertebrates. Experimentally validated micro-FE analyses are a powerful method in the study of materials with complex microstructures such as bone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app