Add like
Add dislike
Add to saved papers

Barometric pressure and triaxial accelerometry-based falls event detection.

Falls and fall related injuries are a significant cause of morbidity, disability, and health care utilization, particularly among the age group of 65 years and over. The ability to detect falls events in an unsupervised manner would lead to improved prognoses for falls victims. Several wearable accelerometry and gyroscope-based falls detection devices have been described in the literature; however, they all suffer from unacceptable false positive rates. This paper investigates the augmentation of such systems with a barometric pressure sensor, as a surrogate measure of altitude, to assist in discriminating real fall events from normal activities of daily living. The acceleration and air pressure data are recorded using a wearable device attached to the subject's waist and analyzed offline. The study incorporates several protocols including simulated falls onto a mattress and simulated activities of daily living, in a cohort of 20 young healthy volunteers (12 male and 8 female; age: 23.7 ±3.0 years). A heuristically trained decision tree classifier is used to label suspected falls. The proposed system demonstrated considerable improvements in comparison to an existing accelerometry-based technique; showing an accuracy, sensitivity and specificity of 96.9%, 97.5%, and 96.5%, respectively, in the indoor environment, with no false positives generated during extended testing during activities of daily living. This is compared to 85.3%, 75%, and 91.5% for the same measures, respectively, when using accelerometry alone. The increased specificity of this system may enhance the usage of falls detectors among the elderly population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app