Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fate of aromatic hydrocarbons in Italian municipal wastewater systems: an overview of wastewater treatment using conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs).

Water Research 2011 January
We studied the occurrence, removal, and fate of 16 polycyclic aromatic hydrocarbons (PAHs) and 23 volatile organic compounds (VOCs) in Italian municipal wastewater treatment systems in terms of their common contents and forms, and their apparent and actual removal in both conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs). We studied five representative full-scale CASP treatment plants (design capacities of 12,000 to 700,000 population-equivalent), three of which included MBR systems (one full-scale and two pilot-scale) operating in parallel with the conventional systems. We studied the solid-liquid partitioning and fates of these substances using both conventional samples and a novel membrane-equipped automatic sampler. Among the VOCs, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, and 4-chlorotoluene were ubiquitous, whereas naphthalene, acenaphthene, fluorene, and phenanthrene were the most common PAHs. Both PAHs and aromatic VOCs had removal efficiencies of 40-60% in the headworks, even in plants without primary sedimentation. Mainly due to volatilization, aromatic VOCs had comparable removal efficiencies in CASP and MBRs, even for different sludge ages. MBRs did not enhance the retention of PAHs sorbed to suspended particulates compared with CASPs. On the other hand, the specific daily accumulation of PAHs in the MBR's activated sludge decreased logarithmically with increasing sludge age, indicating enhanced biodegradation of PAHs. The PAH and aromatic VOC contents in the final effluent are not a major driver for widespread municipal adoption of MBRs, but MBRs may enhance the biodegradation of PAHs and their removal from the environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app