Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

SOD1 and MitoTEMPO partially prevent mitochondrial permeability transition pore opening, necrosis, and mitochondrial apoptosis after ATP depletion recovery.

Generation of excessive reactive oxygen species (ROS) leads to mitochondrial dysfunction, apoptosis, and necrosis in renal ischemia-reperfusion (IR) injury. Previously we showed that lentiviral vector-mediated overexpression of superoxide dismutase-1 (SOD1) in proximal tubular epithelial cells (LLC-PK(1)) reduced cytotoxicity in an in vitro model of IR injury. Here, we examined the effects of SOD1 overexpression on mitochondrial signaling after ATP depletion-recovery (ATP-DR). To examine the role of mitochondrial ROS, a subset of cells was treated with the mitochondrial antioxidant MitoTEMPO. ATP-DR-mediated increase in mitochondrial calcium, loss of mitochondrial membrane potential, and increase in mitochondrial permeability transition pore (MPTP) were attenuated by SOD1 and MitoTEMPO (P<0.01). SOD1 prevented ATP-DR-induced mitochondrial Bax translocation, although the release of proapoptotic proteins from mitochondria was not prevented by SOD1 alone and required the presence of both SOD1 and MitoTEMPO. SOD1 suppressed the increase in c-jun phosphorylation, suggesting that JNK signaling regulates Bax translocation to mitochondria via ROS. ATP-DR-mediated changes in MPTP and mitochondrial signaling increased necrosis and apoptosis, both of which were partially attenuated by SOD1 and MitoTEMPO. These studies show that SOD1 and MitoTEMPO preserve mitochondrial integrity and attenuate ATP-DR-mediated necrosis and apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app