Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacities, as well as inhibition of ChEs and BACE1.

Life Sciences 2010 September 26
AIMS: the multifunctional potential of neferine derived from the embryo of Nelumbo nucifera seeds for the age-related neurodegenerative disorders, in vivo anti-amnesic activities and in vitro cholinesterases (ChEs)- and β-site APP cleaving enzyme 1 (BACE1)-inhibitory activities, as well as anti-inflammatory and antioxidant activities were investigated.

MAIN METHODS: in vivo anti-amnesic activities were performed via the passive avoidance, Y-maze, and Morris water maze tasks in a scopolamine-induced amnesia model. The cell-free antioxidant capacities were evaluated by in vitro scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals, and peroxynitrite (ONOO(-)), as well as inhibitory activities against nitric oxide (NO), superoxide anion (O(2)(-)), lipid peroxidation, and ONOO(-)-mediated tyrosine nitration. The intracellular antioxidant capacities were also determined via inhibitory activities of lipopolysaccharide (LPS)-induced NO generation and NF-κB activation in RAW 264.7 cells.

KEY FINDINGS: neferine showed significant improvement in cognitive impairment in scopolamine-induced amnesia animal models and moderate inhibitory activities in ChEs and BACE1 assays. In addition, it exhibited notable scavenging activities against DPPH, ABTS, NO, and O(2)(-) radicals, as well as ONOO(-). Neferine also demonstrated remarkable inhibitory activity against lipid peroxidation and protein nitration in cell-free antioxidant assays and moderate inhibitory activity of NO generation with exceptional suppression of NF-κB activation in cell-based assays.

SIGNIFICANCE: the results demonstrate that the anti-amnesic effect of neferine may be mediated via antioxidant and anti-inflammatory capacities, as well as inhibition of ChEs and BACE1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app