2-Methoxystypandrone represses RANKL-mediated osteoclastogenesis by down-regulating formation of TRAF6-TAK1 signalling complexes

W F Chiou, J F Liao, C Y Huang, C C Chen
British Journal of Pharmacology 2010, 161 (2): 321-35

BACKGROUND AND PURPOSE: 2-Methoxystypandrone (2-MS) is a naphthoquinone isolated from Polygonum cuspidatum, a Chinese herb used to treat bone diseases. Here we have determined whether 2-MS antagonised osteoclast development and bone resorption.

EXPERIMENTAL APPROACH: RAW264.7 cells were treated with receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL) to induce differentiation into osteoclasts. RT-PCR and Western blot were used to analyse osteoclast-associated gene expression and signalling pathways.

KEY RESULTS: The number of multinuclear osteoclasts, actin rings and resorption pit formation were markedly inhibited by 2-MS, targeting osteoclast differentiation at an early stage and without significant cytotoxicity. The anti-resorption effect of 2-MS was accompanied by decreasing dendritic cell-specific transmembrane protein and matrix metalloproteinase-9 (MMP-9) mRNA expression. RANKL-increased MMP-9 gelatinolytic activity was also attenuated by concurrent, but not by subsequent addition of 2-MS. 2-MS markedly inhibited not only the RANKL-triggered nuclear translocations of NF-kappaB, c-Fos and nuclear factor of activated T cells c1 (NFATc1), but also the subsequent NFATc1 induction. Degradation of IkappaB and phosphorylation of mitogen-activated protein kinases were also suppressed. RANKL facilitated the formation of signaling complexes of tumour necrosis factor receptor-associated factor 6 and transforming growth factor beta-activated kinase 1 (TRAF6-TAK1), important for osteoclastogenesis and formation of such signalling complexes was prevented by 2-MS.

CONCLUSIONS AND IMPLICATIONS: The anti-osteoclastogenic effects of 2-MS could reflect the block of RANKL-induced association of TRAF6-TAK1 complexes with consequent decrease of IkappaB-mediated NF-kappaB and mitogen-activated protein kinases-mediated c-Fos activation pathways and suppression of NFATc1 and other gene expression, essential for bone resorption.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"