JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

2-Methoxystypandrone represses RANKL-mediated osteoclastogenesis by down-regulating formation of TRAF6-TAK1 signalling complexes.

BACKGROUND AND PURPOSE: 2-Methoxystypandrone (2-MS) is a naphthoquinone isolated from Polygonum cuspidatum, a Chinese herb used to treat bone diseases. Here we have determined whether 2-MS antagonised osteoclast development and bone resorption.

EXPERIMENTAL APPROACH: RAW264.7 cells were treated with receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL) to induce differentiation into osteoclasts. RT-PCR and Western blot were used to analyse osteoclast-associated gene expression and signalling pathways.

KEY RESULTS: The number of multinuclear osteoclasts, actin rings and resorption pit formation were markedly inhibited by 2-MS, targeting osteoclast differentiation at an early stage and without significant cytotoxicity. The anti-resorption effect of 2-MS was accompanied by decreasing dendritic cell-specific transmembrane protein and matrix metalloproteinase-9 (MMP-9) mRNA expression. RANKL-increased MMP-9 gelatinolytic activity was also attenuated by concurrent, but not by subsequent addition of 2-MS. 2-MS markedly inhibited not only the RANKL-triggered nuclear translocations of NF-kappaB, c-Fos and nuclear factor of activated T cells c1 (NFATc1), but also the subsequent NFATc1 induction. Degradation of IkappaB and phosphorylation of mitogen-activated protein kinases were also suppressed. RANKL facilitated the formation of signaling complexes of tumour necrosis factor receptor-associated factor 6 and transforming growth factor beta-activated kinase 1 (TRAF6-TAK1), important for osteoclastogenesis and formation of such signalling complexes was prevented by 2-MS.

CONCLUSIONS AND IMPLICATIONS: The anti-osteoclastogenic effects of 2-MS could reflect the block of RANKL-induced association of TRAF6-TAK1 complexes with consequent decrease of IkappaB-mediated NF-kappaB and mitogen-activated protein kinases-mediated c-Fos activation pathways and suppression of NFATc1 and other gene expression, essential for bone resorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app