JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Positive correlation between PPARgamma/PGC-1alpha and gamma-GCS in lungs of rats and patients with chronic obstructive pulmonary disease.

Oxidative stress is one of the major pathogenesis of chronic obstructive pulmonary disease (COPD). gamma-Glutamylcysteine synthetase (gamma-GCS) is one of the paramount antioxidant enzymes in COPD. Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a ligand-activated transcription factor, which is activated by specific ligands such as rosiglitazone (RGZ), exerting multiple biological effects. PPARgamma coactivator-1alpha (PGC-1alpha) is a PPARgamma coactivator, which binds to PPARgamma by induction of PPARgamma ligands, co-activating PPARgamma target genes. Growing evidence has suggested that PPARgamma/PGC-1alpha can regulate multiple antioxidant genes. However, the effect of PPARgamma/PGC-1alpha on gamma-GCS during the development of COPD remains unclear. Here, we measured the expression levels of PPARgamma, PGC-1alpha and gamma-GCS, gamma-GCS activity and reactive oxygen species (ROS) contents in lungs of rats treated by cigarette smoke (CS) + lipopolysaccharide (LPS) and CS + LPS + RGZ, as well as lungs of patients suffered from COPD. Compared with lungs from CS + LPS-treated rats, lungs of RGZ-treated rats demonstrated markedly lower ROS contents, and remarkable increase of gamma-GCS activity and increase of the expression levels of PPARgamma, PGC-1alpha, and gamma-GCS. Furthermore, compared with controls, expression levels of PPARgamma, PGC-1alpha, and gamma-GCS significantly increased in the lungs of mild COPD patients, and progressively decreased in lungs of patients with moderate and severe COPD. gamma-GCS protein was positively correlated with FEV(1)%. PPARgamma and PGC-1alpha proteins were positively correlated with gamma-GCS activity and mRNA level. In conclusion, gamma-GCS showed compensatory upregulation in the early stage of COPD, which progressively decompensate with increasing COPD severity. The activation of the PPARgamma/PGC-1alpha pathway may protect against COPD progression by upregulating gamma-GCS and relieving oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app