Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma.

ACS Nano 2010 August 25
Glioma accounts for 80% of brain tumors and currently remains one of the most lethal forms of cancers. Gene therapy could potentially improve the dismal prognosis of patients with glioma, but this treatment modality has not yet reached the bedside from the laboratory due to the lack of safe and effective gene delivery vehicles. In this study we investigate targeted gene delivery to C6 glioma cells in a xenograft mouse model using chlorotoxin (CTX) labeled nanoparticles. The developed nanovector consists of an iron oxide nanoparticle core, coated with a copolymer of chitosan, polyethylene glycol (PEG), and polyethylenimine (PEI). Green fluorescent protein (GFP) encoding DNA was bound to these nanoparticles, and CTX was then attached using a short PEG linker. Nanoparticles without CTX were also prepared as a control. Mice bearing C6 xenograft tumors were injected intravenously with the DNA-bound nanoparticles. Nanoparticle accumulation in the tumor site was monitored using magnetic resonance imaging and analyzed by histology, and GFP gene expression was monitored through Xenogen IVIS fluorescence imaging and confocal fluorescence microscopy. Interestingly, the CTX did not affect the accumulation of nanoparticles at the tumor site but specifically enhanced their uptake into cancer cells as evidenced by higher gene expression. These results indicate that this targeted gene delivery system may potentially improve treatment outcome of gene therapy for glioma and other deadly cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app