Add like
Add dislike
Add to saved papers

Effects of atorvastatin and L-arginine treatments on electrical field stimulation-mediated relaxations in pulmonary arterial rings of monocrotaline-induced pulmonary hypertensive rats.

This study aimed to examine the effect of monocrotaline (MCT)-induced pulmonary hypertension on electrical field stimulation (EFS)-mediated relaxation in rings of rat main pulmonary artery and to see whether treatment with atorvastatin or L-arginine would prevent the action of MCT. Rats were killed 21 days after MCT injection (60 mg/kg), and the main pulmonary arteries were isolated. EFS (40 V, 0.2 milliseconds, 5 seconds, 10 Hz)-induced relaxations in vessels precontracted with phenylephrine (10(-6) to 3 × 10(-6) M) were abolished in MCT-injected group compared with control group. Treatment of MCT group with atorvastatin (10 mg/kg, orally) completely, whereas treatment with L-arginine (500 mg/kg, intraperitoneally) partially but significantly prevented the inhibition. Similarly, acetylcholine (10(-9) to 3 × 10(-5) M)-evoked relaxations that were markedly inhibited in MCT-group were also protected from inhibition after pretreatment with atorvastatin or L-arginine. Responses to endothelium-independent relaxants sodium nitroprusside (10(-9) to 10(-5) M), pinacidil (10(-10) to 10(-4) M), and papaverine (10(-8) to 10(-4) M) were unaltered in MCT-induced pulmonary hypertensive rats. The present findings suggest that MCT-induced pulmonary hypertension inhibits the EFS-mediated relaxation through suppression of endothelial NO production. Reversal of this inhibition by atorvastatin treatment presumably results from stimulation of endothelial nitric oxide synthase expression. Relatively weak protection elicited by L-arginine might be secondary to impaired endothelial nitric oxide synthase activity caused by MCT-induced pulmonary hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app