JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Knock-in gain-of-function sodium channel mutation prolongs atrial action potentials and alters atrial vulnerability.

BACKGROUND: Patients with long QT syndrome (LQTS) are at increased risk not only for ventricular arrhythmias but also for atrial pathology including atrial fibrillation (AF). Some patients with "lone" AF carry Na(+)-channel mutations.

OBJECTIVE: The purpose of this study was to determine the mechanisms underlying atrial pathology in LQTS.

METHODS: In mice with a heterozygous knock-in long QT syndrome type 3 (LQT3) mutant of the cardiac Na(+) channel (ΔKPQ-SCN5A) and wild-type (WT) littermates, atrial size, function, and electrophysiologic parameters were measured in intact Langendorff-perfused hearts, and histologic analysis was performed.

RESULTS: Atrial action potential duration, effective refractory period, cycle length, and PQ interval were prolonged in ΔKPQ-SCN5A hearts (all P < .05). Flecainide (1 μM) reversed atrial action potential duration prolongation and induced postrepolarization refractoriness (P < .05). Arrhythmias were infrequent during regular rapid atrial rate in both WT and ΔKPQ-SCN5A but were inducible in 15 (38%) of 40 ΔKPQ-SCN5A and 8 (29%) of 28 WT mice upon extrastimulation. Pacing protocols generating rapid alterations in rate provoked atrial extrasystoles and arrhythmias in 6 (66%) of 9 ΔKPQ-SCN5A but in 0 (0%) of 6 WT mice (P < .05). Atrial diameter was increased by nearly 10% in ΔKPQ-SCN5A mice > 5 months old without increase in fibrotic tissue.

CONCLUSION: Murine hearts bearing an LQT3 mutation show abnormalities in atrial electrophysiology and subtle changes in atrial dimension, including an atrial arrhythmogenic phenotype on provocation. These results support clinical data suggesting that LQTS mutations can cause atrial pathology and arrhythmogenesis and indicate that murine sodium channel LQTS models may be useful for exploring underlying mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app