JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus.

Antiviral Research 2010 November
The discovery and development of new, highly potent anti-coronavirus agents and effective approaches for controlling the potential emergence of epidemic coronaviruses still remains an important mission. Here, we identified tylophorine compounds, including naturally occurring and synthetic phenanthroindolizidines and phenanthroquinolizidines, as potent in vitro inhibitors of enteropathogenic coronavirus transmissible gastroenteritis virus (TGEV). The potent compounds showed 50% maximal effective concentration (EC₅₀) values ranging from 8 to 1468 nM as determined by immunofluorescent assay of the expression of TGEV N and S proteins and by real time-quantitative PCR analysis of viral yields. Furthermore, the potent tylophorine compounds exerted profound anti-TGEV replication activity and thereby blocked the TGEV-induced apoptosis and subsequent cytopathic effect in ST cells. Analysis of the structure-activity relations indicated that the most active tylophorine analogues were compounds with a hydroxyl group at the C14 position of the indolizidine moiety or at the C3 position of the phenanthrene moiety and that the quinolizidine counterparts were more potent than indolizidines. In addition, tylophorine compounds strongly reduced cytopathic effect in Vero 76 cells induced by human severe acute respiratory syndrome coronavirus (SARS CoV), with EC₅₀ values ranging from less than 5 to 340 nM. Moreover, a pharmacokinetic study demonstrated high and comparable oral bioavailabilities of 7-methoxycryptopleurine (52.7%) and the naturally occurring tylophorine (65.7%) in rats. Thus, our results suggest that tylophorine compounds are novel and potent anti-coronavirus agents that may be developed into therapeutic agents for treating TGEV or SARS CoV infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app